Extensions 1→N→G→Q→1 with N=C22xC6 and Q=S3

Direct product G=NxQ with N=C22xC6 and Q=S3
dρLabelID
S3xC22xC648S3xC2^2xC6144,195

Semidirect products G=N:Q with N=C22xC6 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C22xC6):1S3 = C6xS4φ: S3/C1S3 ⊆ Aut C22xC6183(C2^2xC6):1S3144,188
(C22xC6):2S3 = C2xC3:S4φ: S3/C1S3 ⊆ Aut C22xC6186+(C2^2xC6):2S3144,189
(C22xC6):3S3 = C6xC3:D4φ: S3/C3C2 ⊆ Aut C22xC624(C2^2xC6):3S3144,167
(C22xC6):4S3 = C2xC32:7D4φ: S3/C3C2 ⊆ Aut C22xC672(C2^2xC6):4S3144,177
(C22xC6):5S3 = C23xC3:S3φ: S3/C3C2 ⊆ Aut C22xC672(C2^2xC6):5S3144,196

Non-split extensions G=N.Q with N=C22xC6 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C22xC6).1S3 = C3xA4:C4φ: S3/C1S3 ⊆ Aut C22xC6363(C2^2xC6).1S3144,123
(C22xC6).2S3 = C6.S4φ: S3/C1S3 ⊆ Aut C22xC6366-(C2^2xC6).2S3144,33
(C22xC6).3S3 = C2xC3.S4φ: S3/C1S3 ⊆ Aut C22xC6186+(C2^2xC6).3S3144,109
(C22xC6).4S3 = C6.7S4φ: S3/C1S3 ⊆ Aut C22xC6366-(C2^2xC6).4S3144,126
(C22xC6).5S3 = C3xC6.D4φ: S3/C3C2 ⊆ Aut C22xC624(C2^2xC6).5S3144,84
(C22xC6).6S3 = C18.D4φ: S3/C3C2 ⊆ Aut C22xC672(C2^2xC6).6S3144,19
(C22xC6).7S3 = C22xDic9φ: S3/C3C2 ⊆ Aut C22xC6144(C2^2xC6).7S3144,45
(C22xC6).8S3 = C2xC9:D4φ: S3/C3C2 ⊆ Aut C22xC672(C2^2xC6).8S3144,46
(C22xC6).9S3 = C62:5C4φ: S3/C3C2 ⊆ Aut C22xC672(C2^2xC6).9S3144,100
(C22xC6).10S3 = C23xD9φ: S3/C3C2 ⊆ Aut C22xC672(C2^2xC6).10S3144,112
(C22xC6).11S3 = C22xC3:Dic3φ: S3/C3C2 ⊆ Aut C22xC6144(C2^2xC6).11S3144,176
(C22xC6).12S3 = Dic3xC2xC6central extension (φ=1)48(C2^2xC6).12S3144,166

׿
x
:
Z
F
o
wr
Q
<